Serine Hydroxymethyltransferase from the Cold Adapted Microorganism Psychromonas ingrahamii: A Low Temperature Active Enzyme with Broad Substrate Specificity
نویسندگان
چکیده
Serine hydroxymethyltransferase from the psychrophilic microorganism Psychromonas ingrahamii was expressed in Escherichia coli and purified as a His-tag fusion protein. The enzyme was characterized with respect to its spectroscopic, catalytic, and thermodynamic properties. The properties of the psychrophilic enzyme have been contrasted with the characteristics of the homologous counterpart from E. coli, which has been structurally and functionally characterized in depth and with which it shares 75% sequence identity. Spectroscopic measures confirmed that the psychrophilic enzyme displays structural properties almost identical to those of the mesophilic counterpart. At variance, the P. ingrahamii enzyme showed decreased thermostability and high specific activity at low temperature, both of which are typical features of cold adapted enzymes. Furthermore, it was a more efficient biocatalyst compared to E. coli serine hydroxymethyltransferase (SHMT) particularly for side reactions. Many β-hydroxy-α-amino acids are SHMT substrates and represent important compounds in the synthesis of pharmaceuticals, agrochemicals and food additives. Thanks to these attractive properties, this enzyme could have a significant potential for biotechnological applications.
منابع مشابه
The origin of reaction specificity in serine hydroxymethyltransferase.
Cytosolic serine hydroxymethyltransferase has been shown previously to exhibit both broad substrate and reaction specificity. In addition to cleaving many different 3-hydroxyamino acids to glycine and an aldehyde, the enzyme also catalyzes with several amino acid substrate analogs decarboxylation, transamination, and racemization reactions. To elucidate the relationship of the structure of the ...
متن کاملSerine hydroxymethyltransferase from Escherichia coli: purification and properties.
Serine hydroxymethyltransferase from Escherichia coli was purified to homogeneity. The enzyme was a homodimer of identical subunits with a molecular weight of 95,000. The amino acid sequence of the amino and carboxy-terminal ends and the amino acid composition of cysteine-containing tryptic peptides were in agreement with the primary structure proposed for this enzyme from the structure of the ...
متن کاملRole of pro-297 in the catalytic mechanism of sheep liver serine hydroxymethyltransferase.
Serine hydroxymethyltransferase belongs to the alpha class of pyridoxal-5'-phosphate enzymes along with aspartate aminotransferase. Recent reports on the three-dimensional structure of human liver cytosolic serine hydroxymethyltransferase had suggested a high degree of similarity between the active-site geometries of the two enzymes. A comparison of the sequences of serine hydroxymethyltransfer...
متن کاملCatalytic and thermodynamic properties of tetrahydromethanopterin-dependent serine hydroxymethyltransferase from Methanococcus jannaschii.
The reaction catalyzed by serine hydroxymethyltransferase (SHMT), the transfer of Cbeta of serine to tetrahydropteroylglutamate, represents in Eucarya and Eubacteria a major source of one-carbon (C1) units for several essential biosynthetic processes. In many Archaea, C1 units are carried by modified pterin-containing compounds, which, although structurally related to tetrahydropteroylglutamate...
متن کاملProperties of a serine hydroxymethyltransferase in which an active site histidine has been changed to an asparagine by site-directed mutagenesis.
Histidine 228 at the active site of Escherichia coli serine hydroxymethyltransferase was replaced with an asparagine. The mutant enzyme was expressed in a strain of E. coli that lacks wild type enzyme. Absorption spectra, circular dichroism spectra, and differential scanning calorimetry thermograms suggest that the amino acid change at the active site causes no detectable change in the tertiary...
متن کامل